J Distance to Work 题解
题意:
给你一个多边形,然后给你一个在多边形里面的点,让你求出以这个点为圆心半径r,使得该多边形与该圆的相交的面积占多边形的(1-p/q)
思路:
用求多边形与圆相交面积的几何模板,二分半径求得答案
注意:代码里直接固定了二分次数,这样可以防止精度丢失
代码:
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
using namespace std;
const double eps = 1e-9;
const double PI = acos(-1.0);
int dcmp(double x)
{
if( x > eps ) return 1;
return x < -eps ? -1 : 0;
}
struct Point
{
double x,y;
Point()
{
x = y = 0;
}
Point(double a,double b)
{
x = a;
y = b;
}
inline void input()
{
scanf("%lf%lf",&x,&y);
}
inline Point operator-(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
inline Point operator+(const Point &b)const
{
return Point(x + b.x,y + b.y);
}
inline Point operator*(const double &b)const
{
return Point(x * b,y * b);
}
inline double dot(const Point &b)const
{
return x * b.x + y * b.y;
}
inline double cross(const Point &b,const Point &c)const
{
return (b.x - x) * (c.y - y) - (c.x - x) * (b.y - y);
}
inline double Dis(const Point &b)const
{
return sqrt((*this-b).dot(*this-b));
}
inline bool InLine(const Point &b,const Point &c)const //三点共线
{
return !dcmp(cross(b,c));
}
inline bool OnSeg(const Point &b,const Point &c)const //点在线段上,包括端点
{
return InLine(b,c) && (*this - c).dot(*this - b) < eps;
}
int operator^(const Point &b) const
{
return y*b.x-x*b.y;
}
};
inline double min(double a,double b)
{
return a < b ? a : b;
}
inline double max(double a,double b)
{
return a > b ? a : b;
}
inline double Sqr(double x)
{
return x * x;
}
inline double Sqr(const Point &p)
{
return p.dot(p);
}
Point LineCross(const Point &a,const Point &b,const Point &c,const Point &d)
{
double u = a.cross(b,c), v = b.cross(a,d);
return Point((c.x * v + d.x * u) / (u + v), (c.y * v + d.y * u) / (u + v));
}
double LineCrossCircle(const Point &a,const Point &b,const Point &r,
double R,Point &p1,Point & p2)
{
Point fp = LineCross(r, Point(r.x+a.y-b.y, r.y+b.x-a.x), a, b);
double rtol = r.Dis(fp);
double rtos = fp.OnSeg(a, b) ? rtol : min(r.Dis(a), r.Dis(b));
double atob = a.Dis(b);
double fptoe = sqrt(R * R - rtol * rtol) / atob;
if( rtos > R - eps ) return rtos;
p1 = fp + (a - b) * fptoe;
p2 = fp + (b - a) * fptoe;
return rtos;
}
double SectorArea(const Point &r,const Point &a,const Point &b,double R) //不大于180度扇形面积,r->a->b逆时针
{
double A2 = Sqr(r - a), B2 = Sqr(r - b), C2 = Sqr(a - b);
return R * R * acos( (A2 + B2 - C2) * 0.5 / sqrt(A2) / sqrt(B2)) * 0.5;
}
double TACIA(const Point &r,const Point &a,const Point &b,double R)
{
double adis = r.Dis(a), bdis = r.Dis(b);
if( adis < R + eps && bdis < R + eps )
return r.cross(a, b) * 0.5;
Point ta, tb;
if( r.InLine(a,b) ) return 0.0;
double rtos = LineCrossCircle(a, b, r, R, ta, tb);
if( rtos > R - eps )
return SectorArea(r, a, b, R);
if( adis < R + eps )
return r.cross(a, tb) * 0.5 + SectorArea(r, tb, b, R);
if( bdis < R + eps )
return r.cross(ta, b) * 0.5 + SectorArea(r, a, ta, R);
return r.cross(ta, tb) * 0.5 + SectorArea(r, tb, b, R) + SectorArea(r, a, ta, R);
}
const int MAXN = 505;
Point p[MAXN];
double SPICA(int n,Point r,double R)
{
int i;
double ret = 0, if_clock_t;
for( i = 0 ; i < n ; ++i )
{
if_clock_t = dcmp(r.cross(p[i], p[(i + 1) % n]));
if( if_clock_t < 0 )
ret -= TACIA(r, p[(i + 1) % n], p[i], R);
else ret += TACIA(r, p[i], p[(i + 1) % n], R);
}
return fabs(ret);
}
double ComputePolygonArea(int n)
{
double sum=0;
for(int i=1;i<=n-1;i++)
sum+=(p[i]^p[i-1]);
sum+=(p[0]^p[n-1]);
return fabs(sum/2);
}
int main()
{
int n,m;
scanf("%d",&n);///多边形n个顶点
for(int i = 0 ; i < n ; ++i )///顶点坐标
p[i].input();
double polyArea = ComputePolygonArea(n);///计算多边形面积
scanf("%d",&m);
while(m--)
{
Point circle;
circle.input(); ///圆心坐标
int pp,qq;
scanf("%d%d",&pp,&qq);
double area = (1.0-(double)pp/qq)*polyArea;
///二分圆的半径
// printf("%f\n",area);
double l =0, r=1e18;
///固定二分次数
for(int i=1;i<300;i++){
double mid = (l+r)/2.0;
double insection = SPICA(n,circle,mid); ///圆与多边形交的面积
if(insection>area){
r = mid-eps;
}else{
l = mid;
}
}
printf("%.10lf\n",r);
}
return 0;
} 