题解 | 单神经元
单神经元
https://www.nowcoder.com/practice/8903b7c94c6f4f4f963b7d05e1e397c7
import math
import numpy as np
def softmax(x):
return 1/(1+math.exp(-1*x))
def single_neuron_model(features, labels, weights, bias):
probabilities = []
diff = 0
for i in range(len(features)):
z = 0
for j in range(len(features[i])):
z += features[i][j] * weights[j]
z = softmax(z + bias)
z = round(z,4)
probabilities.append(z)
diff += (z - labels[i])**2
mse = diff / len(features)
mse = round(mse, 4)
return probabilities, mse
if __name__ == "__main__":
features = np.array(eval(input()))
labels = np.array(eval(input()))
weights = np.array(eval(input()))
bias = float(input())
print(single_neuron_model(features, labels, weights, bias))