顺丰内推,顺丰内推码

笔面

9月刚开!

java面经:

顺丰

一面:

1. 自我介绍

2. 线程池核心参数

3. 任务队列大小如何设置

4. 拒绝策略有哪些,可能会有什么问题

5. 核心线程数如何设置

6. 一个类如何保证线程安全

7. CAS原理

8. synchornized和reentrantlock区别

9. wait、notify使用需要注意什么

10. 什么是死锁,如何避免

11. volatile的作用

12. 数据库ACID

13. 数据库隔离级别

14. 分布式事务了解吗

15. 场景题:生成订单和第三方支付

16. 时长:30min

顺丰集团2026届校招启动!

【公司简介】:顺丰集团是世界500强企业第377位,中国第一大、世界第四大快递物流服务商。

【岗位】:开发、算法、商业数据分析、管培生、国际管培生、人力、财务、大数据、运营星计划、企划、菁英计划-Marketing、产品经理、产品运营、项目管理、经营管理岗、航空类(不限专业不卡学校,每人可同时投递2个职位)

【工作城市】:深圳、武汉、上海、广州、湖南、重庆、成都等全国各地均有岗

【薪酬福利】:有竞争力的薪资、五险一金、法定假期、通讯补贴、兴趣社团、弹性福利、医食住教行福利包、节日礼包、开工利是、体检、健康驿站、绩优福利、绩优假、绩优活动

【内推链接】

https://campus.sf-express.com/m/?channel=29&referCode=0H0PCC#/newGraduatesList

【内推码】0H0PCC(招聘信息获取渠道选择“校园大使推荐”,加速进面,有问题随时回复~)

大家投递完可以在评论区打上姓名缩写+岗位(比如PM+LJJ),我私你们面经~~

引流:字节跳动,海康威视,深信服,腾讯,阿里巴巴,拼多多,滴滴,京东,小米,大疆,美团,好未来,小红书,华为,简历,offer,面试,面经,三方,国企,央企,秋招,应届生,求职,比亚迪,建设银行,工商银行,百度,中兴,邮储、中行、建行、工行、建行、光大、招商银行、科大讯飞、蔚来、新华三、京东方、容知日新、长鑫存储、阳光电源、中国移动、中国电信、中国联通,中兴,虾皮,网易,腾讯音乐,京东,虎牙,b站,bigo,思科,亚马逊,荣耀,小米,联想,tplink,第四范式,米哈游,携程,旷视,美的,索尼,OPPO,满帮,momenta,欢聚,shein,用友,哈啰,vivo,完美世界,地平线,爱奇艺,汇顶,得物,深睿医疗,全志科技,禾赛,唯品会,度小满,蔚来

#牛友职场人脉来了#
全部评论

相关推荐

最终还是婉拒了小红书的offer,厚着脸皮回了字节。其实这次字节不管是组内的氛围、HR的沟通体验,都比之前好太多,开的薪资也还算过得去,这些都是让我下定决心的原因之一。但最核心的,还是抵不住对Agent的兴趣,选择了Ai Coding这么一个方向。因为很多大佬讲过,在未来比较火的还是属于那些更加垂类的Agent,而Ai Coding恰好是Coding Agent这么一个领域,本质上还是程序员群体和泛程序员群体这个圈子的。目前也已经在提前实习,也是全栈这么一个岗位。就像最近阿里P10针对前端后端等等不再那么区分,确实在Agent方向不太区分这个。尤其是我们自己做AI Coding的内容,基本上90%左右的内容都是AI生成的,AI代码仓库贡献率也是我们的指标之一。有人说他不好用,那肯定是用的姿态不太对。基本上用对Skill、Rules 加上比较好的大模型基本都能Cover你的大部分需求,更别说Claude、Cursor这种目前看来Top水准的Coding工具了(叠甲:起码在我看来是这样)。所以不太区分的主要原因,还是针对一些例如Claude Code、Cursor、Trae、Codex、CC等一大堆,他们有很多新的概念和架构提出,我们往往需要快速验证(MVP版本)来看效果。而全栈就是这么快速验证的一个手段,加上Ai Coding的辅助,目前看起来问题不大(仅仅针对Agent而言)。而且Coding的产品形态往往是一个Plugin、Cli之类的,本质还是属于大前端领域。不过针对业务后端来看,区分还是有必要的。大家很多人也说Agent不就是Prompt提示词工程么?是的没错,本质上还是提示词。不过现在也衍生出一个新的Context Eneering,抽象成一种架构思想(类比框架、或者你们业务架构,参考商品有商品发布架构来提效)。本质还是提示词,但是就是能否最大化利用整个上下文窗口来提升效果,这个还是有很多探索空间和玩法的,例如Cursor的思想:上下文万物皆文件, CoWork之类的。后续也有一些Ralph Loop啥的,还有Coding里面的Coding Act姿态。这种才是比较核心的点,而不是你让AI生成的那提示词,然后调用了一下大模型那么简单;也不是dify、LangGraph搭建了一套workflow,从一个node走到另外一个node那么简单。Agent和WorkFLow还是两回事,大部分人也没能很好的区分这一点。不过很多人说AI泡沫啥啥啥的,我们ld也常把这句话挂在嘴边:“说AI泡沫还是太大了”诸如此类。我觉得在AI的时代,懂一点还是会好一点,所以润去字节了。目前的实习生活呢,除了修一些Tools的问题,还包括对比Claude、Cursor、Trae在某些源码实现思想上的点,看看能不能迁移过来,感觉还是比较有意思。不过目前组内还是主要Follow比较多,希望下一个阶段就做一些更有创新的事情哈哈。这就是一个牛马大学生的最终牧场,希望能好好的吧。说不定下次发的时候,正式AI泡沫结束,然后我又回归传统后端这么一个结局了。欢迎交流👏,有不对的🙅不要骂博主(浅薄的认知),可以私聊交流
码农索隆:和优秀的人,做有挑战的事
点赞 评论 收藏
分享
01-28 16:12
中南大学 Java
几年前还没有chatgpt的时候,刷题真的是很痛苦。刷不出来只能看题解,题解有几个问题:第一个是每次看的写题解的人都不一样,很难有一个统一的思路;第二个也是最重要的是,题解只提供了作者自己的思路,但是没有办法告诉你你的思路哪里错了。其实很少有错误的思路,我只是需要被引导到正确的思路上面去。所以传统题解学习起来非常困难,每次做不出来难受,找题解更难受。但是现在chatgpt能做很多!它可以这样帮助你 -1. 可以直接按照你喜欢的语言生成各种解法的题解和分析复杂度。2. 把题和你写的代码都发给它,它可以告诉你 你的思路到底哪里有问题。有时候我发现我和题解非常接近,只是有一点点🤏想错了。只要改这一点点就是最优解。信心倍增。3. 如果遇到不懂的题解可以一行一行询问为什么要这样写,chatgpt不会嫌你烦。有时候我觉得自己的range写错了,其实那样写也没错,只是chat老师的题解有一点优化,这个它都会讲清楚。4. 它可以帮你找可以用同类型解法来做的题。然后它可以保持解法思路不变,用一个思路爽刷一个类型的题。如果题目之间思路又有变化,它会告诉你只有哪里变了,其他的地方还是老思路。5. 它也可以直接帮你总结模板,易错点。经过chat老师的指导,我最大的改变是敢刷题了。之前刷题需要先找某一个人写的算法题repo,然后跟着某一个人他的思路刷他给的几个题。如果想写别的题,套用思路失败了,没有他的题解,也不知道到底哪里错了;看别人的题解,思路又乱了。这个问题在二分查找和dp类型的题里面特别常见。但是现在有chat老师,他会针对我的代码告诉我我哪里想错了,应该怎么做;还按照我写代码的习惯帮我总结了一套属于我的刷题模板。每天写题全是正反馈!
牛客981:不刷才是爽
AI时代的工作 VS 传...
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务