怎么知道秒挂的友友
点赞 1

相关推荐

1.你的 Agent 系统Prompt 是怎么设计和迭代的?有没有做过 Prompt 自动优化?当用户提出不完整的请求时,如何补全用户意图的?2.构建 Agent 的时候,遇到过哪些瓶颈?LangChain 的 memory 默认机制在多3.用户并发中怎么做隔离?你是如何保证线程安全的?4.微调 Llama2 你是怎么选择训练样本的?清洗逻辑是什么?你有没有观察到哪些训练样本质量问题对模型行为有很大影响?举例说明。5.DPO相比 SFT,有哪些优劣?它在 Agent 任务上效果提升明显吗?你怎么构造偏好对?构造逻辑是自动的还是人工?6.你说你服务部署在 vLLM 上,为何选择它?KV-cache 如何帮助推理加速?你自己做过哪些优化?7.假如需要支持 Streaming 输出,但当前服务延迟又超标,你会怎么折中设计?8.多轮对话上下文状态管理是如何做的?如何在高并发场景下保证一致性?9.你做的 Agent 使用了多少个外部工具,在调用链条上如何保障故障容错和超时机制?10.有没有做过工具调用失败后的feedback策略设计?11.训练过程中数据来自用户行为日志,你是如何从这些数据中抽取训练对话的?有没有做过归一化或事件抽象?12.有没有了解过带有时间窗口/偏移限制的对话系统?模型怎么“理解时间”?13.你觉得 Agent 哪些模块最容易在真实业务中出问题?你会如何监控和定位的?
点赞 评论 收藏
分享
2025-12-24 15:05
门头沟学院 Python
牛客60944174...:数据源会是多源,多数据格式(包括多模态、结构化、JSON,graph等),怎么把数据进行加载清洗处理,得到合适的数据,如果一篇文章很长,怎么做分块,是直接分块,还是重叠的分,为什么这个场景要这样,有没有更好的分块或者压缩方法。在召回阶段,你的query要怎么重构,例如用户问题是“这个是什么?”这样就是语义很不清晰的,要怎么把query重构成一个语义清晰的问句,才能在查找的时候提高命中率,以及你算完相似度之后重排和召回有没有什么优化,是直接根据向量相似度排序吗?有没有别的重排参数,这些都可以优化。除此外,你的RAG应该是每次调用LLM都用一次的吧,你能不能针对每一个场景写一个表,然后分别打包成MCP,让LLM自己决定要不要用RAG,用哪个RAG,怎么用RAG,这些都可以深挖,除此外,基于向量数据库的RAG有标准流程,你可以对照每个阶段,都做一些工作。希望我的分享对你有帮助。
点赞 评论 收藏
分享
牛客网
牛客网在线编程
牛客网题解
牛客企业服务