百度大模型应用面经

#百度秋招# ✅一面
1.针对简历上的实习提问。
2.kl散度和交叉熵的关系
3.LoRA介绍,和全参sft怎么选择?小模型的sft和大模型的LoRA效果对比会是怎么样的?sft数据集如何构建?
4.介绍AUC,AUC表达的是什么?
5.recall重要的场景下,如果recall很高,precision很低怎么办?
6.precision和recall都是什么,不同场景下precision和recall如何关注?哪个更重要?
7.手撕-实现shuffle函数。
✅二面
1.实习项目介绍和提问。
2.对一份数据在某个场景下进行分类/识别/检测,用大模型有什么方法可以做?
3.如何对AIGC的文本进行评估?
4.幻觉如何解决?真实性如何评估?
5.RAG过程中索引可以做哪些优化?
6.kl散度表示的是什么。
7.反思机制是什么做的?为什么要用反思?
8.ppo中kl散度的作用。
9.手撕kmeans。10.实现一个简单的mlp,从csv读取数据。
📳对于想求职算法岗的同学,如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
全部评论

相关推荐

1.  注意力机制:请简述 MHA、MQA 和 GQA 三种注意力机制的核心区别。2.  模型架构:Dense 模型与 MoE 模型有何本质区别?3.  路由机制:MoE 模型中,路由(Routing)机制具体是如何工作的?4.  LoRA 微调:请阐述 LoRA 的原理,以及其中 A、B 矩阵的初始化方式和秩(Rank)的设置考量。5.  强化学习:请对比 DPO、PPO 和 GRPO 的原理与区别,并写出 DPO 的 Loss 函数公式。6.  推理加速:vLLM 中使用了哪些关键技术(如 PagedAttention、KV Cache)来优化推理?7.  并行框架:你对 DeepSpeed 这一加速推理与训练框架有多少了解?8.  BM25 算法:请讲解 BM25 算法的计算原理。9.  负载均衡:MoE 模型中专家(Expert)的负载不均衡问题该如何解决?10.  损失函数:能否通过修改损失函数的方式来缓解 MoE 的负载均衡问题?11.  数据分布:SFT 微调数据与预训练数据分布差异较大时,该如何处理?12. Scaling Law:SFT 微调的数据集是越大越好吗?是否存在 Scaling Law 现象?13. 训练稳定性:强化学习(RL)为何存在训练不稳定的问题?既然不稳定为何业界仍广泛使用?14. 三数之和:LeetCode 15. 三数之和。📳对于想求职算法岗的同学,如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
查看14道真题和解析
点赞 评论 收藏
分享
评论
4
15
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务