大模型面试 | 大模型评估全攻略

攻略
🌈【大模型评估全攻略】!LLM七大核心评估维度保姆级拆解💯
👉🏻预训练→SFT→RLHF→数据集→RAG→Agent→Prompt
🔥一、预训练评估
评估大型语言模型(LLM)的预训练效果需要从多个维度综合考量,涉及基础语言能力、下游任务表现、知识掌握、推理能力等。
🔥二、SFT评估
评估大型语言模型(LLM)在监督式微调(Supervised Fine-Tuning, SFT)后的效果,需要结合任务目标、领域特性和模型能力设计多维度的评估体系。
🔥️三、RLHF评估
评估大型语言模型(LLM)在通过RLHF(基于人类反馈的强化学习)后的效果需要从多个维度综合考量,包括生成质量、安全性、对齐性、任务完成度等。
🔥四、数据集评估
在评估数据集的质量时,可以从以下几个关键方面进行评估:
1. 数据多样性
2. 数据平衡性
3. 数据完整性
4. 数据一致性
5. 数据与任务的适合性
6. 标注准确性
🔥五、RAG评估
从召回、排序、生成、整体四个维度来评估RAG性能。使用了多种指标,如准确率(Correct)、错误率(Wrong)、失败率(Fail)、BERTScore、ROUGE Score等,以全面评估生成答案的质量。
🔥六、Agent评估
现如今Agent开发工具/框架不断出现,但如何全面地对Agent进行评估却很困难,本文就从介绍一些主流的Agent/LLM-as-Agent评估工作来看看是否能得到一些启发。
🔥七、Prompt评估
评估Prompt的好坏需要一个全面和多维度的方法,结合自动评估指标、人工评估和用户反馈等多种手段。选择合适的评估方法和技术,能够有效提升Prompt的质量和生成效果,进而提高模型的整体性能和应用体验。通过不断优化和改进Prompt设计,可以实现更自然、更准确、更有效的自然语言。

#算法##大厂##面经##大模型面试##大模型##大厂算法岗##秋招##互联网大厂##字节跳动##算法实习##实习#
#找工作##面试#
全部评论
mark
点赞 回复 分享
发布于 11-18 20:14 湖北
大佬,求完整资料
点赞 回复 分享
发布于 07-17 21:22 湖南

相关推荐

1.  注意力机制:请简述 MHA、MQA 和 GQA 三种注意力机制的核心区别。2.  模型架构:Dense 模型与 MoE 模型有何本质区别?3.  路由机制:MoE 模型中,路由(Routing)机制具体是如何工作的?4.  LoRA 微调:请阐述 LoRA 的原理,以及其中 A、B 矩阵的初始化方式和秩(Rank)的设置考量。5.  强化学习:请对比 DPO、PPO 和 GRPO 的原理与区别,并写出 DPO 的 Loss 函数公式。6.  推理加速:vLLM 中使用了哪些关键技术(如 PagedAttention、KV Cache)来优化推理?7.  并行框架:你对 DeepSpeed 这一加速推理与训练框架有多少了解?8.  BM25 算法:请讲解 BM25 算法的计算原理。9.  负载均衡:MoE 模型中专家(Expert)的负载不均衡问题该如何解决?10.  损失函数:能否通过修改损失函数的方式来缓解 MoE 的负载均衡问题?11.  数据分布:SFT 微调数据与预训练数据分布差异较大时,该如何处理?12. Scaling Law:SFT 微调的数据集是越大越好吗?是否存在 Scaling Law 现象?13. 训练稳定性:强化学习(RL)为何存在训练不稳定的问题?既然不稳定为何业界仍广泛使用?14. 三数之和:LeetCode 15. 三数之和。📳对于想求职算法岗的同学,如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
查看14道真题和解析
点赞 评论 收藏
分享
评论
4
27
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务