很详细
预测和分类任务的损失函数为什么不一样?数据分布的差异也是导致预测和分类任务损失函数不一样的原因之一。回归任务面对的是连续变量,其数据分布往往呈现出一定的规律性和连续性;而分类任务处理的是离散的类别标签,数据分布通常是散列的,并且每个类别内部可能并没有明显的先后顺序或大小关系。因此,回归任务更关注于数值预测的精度,而分类任务则更侧重于类别判定的准确性和置信度。这种根本的区别导致了损失函数设计的侧重点不同。NLP领域预训练模型的发展,transformer比word2vec好在哪里?Word2Vec:Word2Vec是一种浅层的神经网络模型,主要包括连续词袋(CBOW)和Skip-gram两种方法。其核心思想是通过给定的上下文来预测当前单词或者通过当前单词预测上下文中的单词。1.这种方法生成的词向量能够捕捉词汇之间的线性关系,但对于更复杂的语义关系则表达能力有限。2.虽然Word2Vec的训练相对较快,但其生成的词向量是静态的,无法根据不同的语境动态调整。Transformer:Transformer则采用了深层的自注意力(Self-Attention)机制,能够同时处理输入序列中所有单词之间的关系。1.这种机制不仅提升了模型对长距离依赖的处理能力,还能捕捉更加丰富的语义信息。2.Transformer模型通过预训练和微调两个阶段,能够有效利用大规模语料库进行训练,并在具体任务上进行精细调整。这使得Transformer在各类NLP任务中都能够获得良好的性能表Layer Normalization的作用是什么?能否用Batch Normalizatioin? Layer Normalization跟数据预处理时初始归一化有什么区别?具体怎么做的?Layer Normalization有助于稳定深层网络的训练,通过对输入的每一层进行标准化处理(使输出均值为0,方差为1),可以加速训练过程并提高模型的稳定性。它通常在自注意力和前馈网络的输出上应用。批归一化是在一个小批量的维度上进行归一化,这意味着它依赖于批次中所有样本的统计信息。因此,BatchNorm的行为会随着批次大小和内容的变化而变化,这在训练和推理时可能导致不一致的表现。在处理变长序列和自注意力结构时,BatchNorm可能不如 LayerNorm 高效,因为变长输入使得批次间的统计信息更加不稳定。BatchNorm在训练时计算当前批次的均值和方差,在推理时使用整个训练集的移动平均统计信息。这种依赖于批次统计信息的特性使得 BatchNorm在小批量或在线学习场景中表现不佳。编程题:平面坐标里有一堆的点,计算一条直线最多能通过多少个点;思路:算两个点确定的直线的斜率和截距,然后判断每条直线是否有相同的斜率和截距;#软件开发笔面经#   #算法面经#
点赞 19
评论 1
全部评论

相关推荐

01-28 16:12
中南大学 Java
几年前还没有chatgpt的时候,刷题真的是很痛苦。刷不出来只能看题解,题解有几个问题:第一个是每次看的写题解的人都不一样,很难有一个统一的思路;第二个也是最重要的是,题解只提供了作者自己的思路,但是没有办法告诉你你的思路哪里错了。其实很少有错误的思路,我只是需要被引导到正确的思路上面去。所以传统题解学习起来非常困难,每次做不出来难受,找题解更难受。但是现在chatgpt能做很多!它可以这样帮助你 -1. 可以直接按照你喜欢的语言生成各种解法的题解和分析复杂度。2. 把题和你写的代码都发给它,它可以告诉你 你的思路到底哪里有问题。有时候我发现我和题解非常接近,只是有一点点🤏想错了。只要改这一点点就是最优解。信心倍增。3. 如果遇到不懂的题解可以一行一行询问为什么要这样写,chatgpt不会嫌你烦。有时候我觉得自己的range写错了,其实那样写也没错,只是chat老师的题解有一点优化,这个它都会讲清楚。4. 它可以帮你找可以用同类型解法来做的题。然后它可以保持解法思路不变,用一个思路爽刷一个类型的题。如果题目之间思路又有变化,它会告诉你只有哪里变了,其他的地方还是老思路。5. 它也可以直接帮你总结模板,易错点。经过chat老师的指导,我最大的改变是敢刷题了。之前刷题需要先找某一个人写的算法题repo,然后跟着某一个人他的思路刷他给的几个题。如果想写别的题,套用思路失败了,没有他的题解,也不知道到底哪里错了;看别人的题解,思路又乱了。这个问题在二分查找和dp类型的题里面特别常见。但是现在有chat老师,他会针对我的代码告诉我我哪里想错了,应该怎么做;还按照我写代码的习惯帮我总结了一套属于我的刷题模板。每天写题全是正反馈!
牛客981:不刷才是爽
AI时代的工作 VS 传...
点赞 评论 收藏
分享
评论
点赞
收藏
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务