牛牛所在的W市是一个不太大的城市,城市有n个路口以及m条公路,这些双向连通的公路长度均为1,保证你可以从一个城市直接或者间接移动到所有的城市。牛牛在玩宝可梦Go,众所周知呢,这个游戏需要到城市的各个地方去抓宝可梦,假设现在牛牛知道了接下来将会刷出k只宝可梦,他还知道每只宝可梦的刷新时刻、地点以及该宝可梦的战斗力,如果在宝可梦刷新时,牛牛恰好在那个路口,他就一定能够抓住那只宝可梦。 由于游戏公司不想让有选择恐惧症的玩家为难,所以他们设计不存在任何一个时刻同时刷出两只及以上的宝可梦。 假设不存在任何一个时刻会同时刷出两只宝可梦,牛牛一开始在城市的1号路口,最开始的时刻为0时刻,牛牛可以在每个时刻之前移动到相邻他所在位置的路口,当然他也可以保持原地不动,他现在想知道他能够捕获的宝可梦战斗力之和最大为多少?
输入描述:
第一行输入两个正整数n,m,表示城市的路口数目以及公路数目。接下来m行每行两个正整数u,v表示一条长度为1链接两个路的公路。接下来一行输入一个正整数k表示宝可梦的数目。接下来输入k行,每行三个正整数,分别表示宝可梦刷新的时间、地点、以及战斗力,输入数据保证不会出现在同一时刻刷出多只宝可梦。
输出描述:
输出一个整数表示牛牛能捉到的宝可梦战斗力之和最大是多少。
示例1
输入
3 2
1 2
2 3
3
1 1 5
2 3 10
3 2 1
示例2
输入
1 0
3
1 1 100
100 1 10000
10000 1 1
示例3
输入
3 2
1 2
2 3
1
1 3 1000000000
示例4
输入
3 2
1 2
2 3
1
1 2 1000000000
备注:
输入数据保证不会出现在同一时刻刷出多只宝可梦。
加载中...