如果一个数字序列逆置之后跟原序列是一样的就称这样的数字序列为回文序列。例如:
{1, 2, 1}, {15, 78, 78, 15}, {112} 是回文序列,
{1, 2, 2}, {15, 78, 87, 51}, {112, 2, 11} 不是回文序列。
现在给出一个数字序列,允许使用一种转换操作:
选择任意两个相邻的数,然后从序列移除这两个数,并用这两个数字的和插入到这两个数之前的位置(只插入一个和)。
现在对于所给序列要求出最少需要多少次操作可以将其变成回文序列。
输入为两行,第一行为序列长度n ( 1 ≤ n ≤ 50) 第二行为序列中的n个整数item[i] (1 ≤ iteam[i] ≤ 1000),以空格分隔。
输出一个数,表示最少需要的转换次数
4 1 1 1 3
2
经过第一次操作后,变为2 1 3,{2, 1, 3} 不是回文序列;
再经过一次操作后,变为3 3,{3, 3} 是回文序列;
所以共需要进行两次转换。 import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
public class Main{
public static void main(String[] args) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String[] strs = br.readLine().split(" ");
int[] arr = new int[n];
for(int i = 0; i < n; i++){
arr[i] = Integer.parseInt(strs[i]);
}
int left = 0, right = n - 1, count = 0;
int head = arr[left], tail = arr[right];
while(left < right){
if(head < tail){
head += arr[++left];
count++;
}else if(head > tail){
tail += arr[--right];
count++;
}else{
left ++;
head = arr[left];
right --;
tail = arr[right];
}
}
System.out.println(count);
}
} import java.util.Scanner;
public class Main{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for(int i=0;i<n;i++){
a[i] = sc.nextInt();
}
int res = power(a);
System.out.print(res);
}
static int power(int[] a){
int start = 0;
int end = a.length-1;
int res = 0;
while(start<end){
if(a[start]==a[end]){
start++;
end--;
}
if(a[start]<a[end] ){
a[start+1] = a[start]+a[start+1];
start++;
res++;
}
if(a[start]>a[end] ){
a[end-1] = a[end]+a[end-1];
end--;
res++;
}
}
return res;
}
} import java.util.Deque;
import java.util.LinkedList;
import java.util.Scanner;
public class Main {
// 吐槽下牛客题目,上面的格式真的无语
// 解题思路,从两边开始计算,如果左边等于右边就删除,不等于就进行操作,由于要在两边进行数据的删除就需要使用到的是双向队列,
直接模拟上面题目要求,如果两边相等就删除,如果左边大就操作右边,反之。每做一次就ans++
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
Deque<Integer> deque = new LinkedList<>();
for (int i = 0; i < n; i++) {
deque.add(sc.nextInt());
}
int start = 0;
int end = deque.size() - 1;
int ans = 0;
while(start < end) {
int l = deque.getFirst();
int r = deque.getLast();
if (l == r) {
deque.pollFirst();
deque.pollLast();
start = 0;
end = deque.size() - 1;
if (deque.size() != 0) {
l = deque.getFirst();
r = deque.getLast();
}
} else if (l > r){
// 左边的更大 4 1 1 1 3
while (l > r && deque.size() != 1) {
deque.pollLast();
r += deque.getLast();
deque.pollLast();
deque.addLast(r);
ans++;
}
end = deque.size() - 1;
} else {
// 右边的更大 3 1 1 1 4
while (l < r && deque.size() != 1) {
deque.pollFirst();
l += deque.getFirst();
deque.pollFirst();
deque.addFirst(l);
ans++;
}
start = 0;
}
}
System.out.println(ans);
}
}
递归
import java.io.BufferedReader;
import java.io.InputStreamReader;
public class Main {
public static void main(String[] args) throws Exception{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int length = Integer.parseInt(br.readLine());
String[] strings = br.readLine().split(" ");
int[] arr = new int[length];
for (int i = 0; i < length; i++) {
arr[i] = Integer.parseInt(strings[i]);
}
System.out.println(getCount(arr,0,length-1));
}
public static int getCount(int[] arr, int start, int end) {
if (end - start <= 0)
return 0;
if (arr[start] == arr[end])
return getCount(arr, start+1,end-1);
else if (arr[start] < arr[end]) {
arr[start+1]=arr[start]+arr[start+1];
return getCount(arr,start+1,end) + 1;
} else {
arr[end-1] = arr[end-1] + arr[end];
return getCount(arr,start,end-1) + 1;
}
}
}
import java.util.Scanner;
public class Main{
public static int minTrans(int []nums){
int count = 0;
int l = 0, r = nums.length - 1;
while(l<=r){
if(nums[l] == nums[r]){
l++;
r--;
}else if(nums[l] > nums[r]){
nums[r-1] += nums[r];
r--;
count++;
}else{
nums[l+1] +=nums[l];
l++;
count++;
}
}
return count;
}
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
while(sc.hasNext()){
int n = sc.nextInt();
int [] nums = new int[n];
for(int i = 0;i < n ; i++) nums[i] = sc.nextInt();
System.out.println(minTrans(nums));
}
sc.close();
}
}
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
while (in.hasNext()) {
int count = in.nextInt();
int[] array = new int[count];
for (int i = 0; i < count; i++)
array[i] = in.nextInt();
int i = 0, j = array.length - 1;
int res = 0;
while (i < j) {
if (array[i] == array[j]) {
i++; j--;
} else if (array[i] < array[j]) {
i++;
array[i] += array[i-1];
res++;
} else {
j--;
array[j] += array[j+1];
res++;
}
}
System.out.println(res);
}
}
}
// 竟然神奇的通过了
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int total = scanner.nextInt();
int[] array = new int[ total ];
for (int i = 0; i < total; i++) {
array[ i ] = scanner.nextInt();
}
System.out.println(transSeq(array, total - 1));
}
public static int transSeq(int[] nums, int high) {
int left = nums[ 0 ], right = nums[ high ];
int i = 1, j = len - 1, count = 0;
while ( i <= j ) {
if (left < right) {
left += nums[ i++ ];
++count;
} else if (left > right) {
right += nums[ j-- ];
++count;
} else {
left = nums[ i++ ];
right = nums[ j-- ];
}
}
return left == right ? count : count + 1;
} 分享一下思路:
两个指针,一个从头开始,朝右移动;一个从尾开始,朝左移动。如果两个指针当前所指的两个数相同,同时移动1;如果左指针的数小,将左指针的数与后一个数相加,并用左指针指向这个新数;如果右指针的数大,将右指针的数与前一个数相加,并用右指针指向这个新数。代码能够AC,但是如果原序列无法调整为回文数列,将产生错误的结果,但是不影响这道题的评分。
import java.util.Scanner;
/**
* Created by chl on 2017/8/12.
*/
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
while (scanner.hasNextLine()){
int number = scanner.nextInt();
int[] numbers = new int[number];
for (int i = 0; i < number; i++) {
numbers[i] = scanner.nextInt();
}
System.out.println(leastAdjustCount(numbers));
}
}
private static int leastAdjustCount(int[] numbers) {
int left = 0;
int right = numbers.length - 1;
int adjustCount = 0;
while (left < right){
if (numbers[left] == numbers[right]){
left++;
right--;
} else if (numbers[left] < numbers[right]){
numbers[left + 1] = numbers[left] + numbers[left + 1];
adjustCount++;
left++;
} else {
numbers[right - 1] = numbers[right] + numbers[right - 1];
right--;
adjustCount++;
}
}
return adjustCount;
}
}
这道题思路是这样的: 要得到回文字符串,两端的值必须相等或者合并,之后向中间递归或者迭代。
需注意的问题:要求中是“去除当前这两个数”。代码中是不是没有得到实现这一步时获得的数组? 答:不需要这一步,因为仔细分析递归的过程,每一步head++或者tail--实质上都已经缩小了数组的范围,相当于删除了原来head或者tail位置附近两位的值同时将新增的值插入。
import java.util.*;
public class Main{
public static void main(String[] arg0){
Scanner scanner=new Scanner(System.in);
while(scanner.hasNext()){
int n=scanner.nextInt();
int[] a=new int[n+5];
//输入数组
for(int i=0;i<n;i++){
a[i]=scanner.nextInt();
}
/*
*递归,头和尾必须相等或者合并
*/
System.out.println(huiwen(a,0,n-1));
}
}
private static int huiwen(int[] a, int head, int tail) {
int times=0;
int left=a[head];
int right=a[tail];
while(left!=right &&head<tail){
if(left<right){
a[++head]+=left;
left=a[head]; times++; }
else{
a[--tail]+=right;
right=a[tail];
times++;
}
}
if(head>=tail)return times;
else return times+=huiwen(a, ++head, --tail);
}
}
import java.util.Scanner;
public class Main{
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();//第一行为序列长度n
//序列中的n个整数item[i]
int [] item = new int[n];
for (int i = 0; i < n; i ++) {
item[i] = sc.nextInt();
}
sc.close();
int times = 0; //转换次数
int head = 0;
int tail = n - 1;
while (head < tail) {
if (item[head] < item[tail]) {
item[++head] += item[head - 1];
times ++;
} else if (item[head] > item[tail]) {
item[-- tail] += item[tail + 1];
times ++;
} else {
head ++;
tail --;
}
}
System.out.println(times);
}
}
import java.util.Scanner;
public class Palindromic {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
while (scan.hasNext()) {
int n = scan.nextInt();
int[] item = new int[n];
for (int i = 0; i < n; i++) {
item[i] = scan.nextInt();
}
System.out.println(count(n, item));
}
}
public static int count(int n, int[] item) {
int count = 0;
int left = 0, right = n - 1;
int head = item[left], tail = item[right];
while (left < right) {
if (head == tail) {
left++;
right--;
head = item[left];
tail = item[right];
} else if (head < tail) {
left++;
head += item[left];
count++;
} else {
right--;
tail += item[right];
count++;
}
}
return count;
}
}
import java.util.Scanner;
public class Main {
public static int changeHW(int n,int[] x){
int changeNum = 0;
int leftPos = 0;
int rightPos = x.length-1;
while(leftPos <= rightPos){
if(x[leftPos] < x[rightPos]){
x[leftPos+1]= x[leftPos]+x[leftPos+1];
leftPos ++;
changeNum ++;
}else if(x[leftPos]>x[rightPos]){
x[rightPos-1]=x[rightPos]+x[rightPos-1];
rightPos --;
changeNum ++;
}else{
leftPos ++;
rightPos --;
}
}
return changeNum;
}
public static void main(String[] args){
Scanner scanner = new Scanner(System.in);
while(scanner.hasNext()){
int n = scanner.nextInt();
if(n<1 || n>50){
System.out.println("输入的序列长度n不符合要求");
return;
}
int[] items = new int[n];
for(int i=0;i<n;i++){
int a=scanner.nextInt();
if(a<1 || a>10000){
System.out.println("序列中的第"+(i+1)+"个整数不符合要求");
return;
}else {
items[i] = a;
}
}
System.out.println(changeHW(n,items));
}
}
}
public class HuiWenXuLie {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int[] a=new int[n];
int m=a.length-1;
for(int i=0;i<n;i++){
a[i]=sc.nextInt();
}
int sum=0,count=0;
for(int i=0,j=m;i<j;j--){
if(a[i]<a[j]){
sum=a[i]+a[i+1];
a[i]=sum;
for(int k=i+1;k<m;k++){
a[k]=a[k+1];
}
count++;
}else if(a[i]>a[j]){
sum=a[j]+a[j-1];
a[j-1]=sum;
count++;
}
else{
i++;
}
}
System.out.println(count);
}
}
//模仿 bupt渣硕 大神的
import java.util.Scanner;
public class Main {
public static void main(String[] args){
Scanner scanner = new Scanner(System.in);
while(scanner.hasNext()){
int times = 0;
int n = scanner.nextInt();
int[] inputArr = new int[n];
for(int i = 0; i < n; i++){
inputArr[i] = scanner.nextInt();
}
int head = 0;
int tail = n - 1;
while(head < tail){
if(inputArr[head] > inputArr[tail]){
inputArr[--tail] += inputArr[tail + 1];
times++;
}else if(inputArr[head] < inputArr[tail]){
inputArr[++head] += inputArr[head - 1];
times++;
}else{
head++;
tail--;
}
}
System.out.println(times);
}
scanner.close();
}
}