White Rabbit is a businessman. It has n warehouses. The i-th warehouse is located at (x1[i],y1[i]) and has a[i] units of products initially.
There will be m orders coming in order.
When the i-th order is coming, White Rabbit will drive to s[i] warehouses from x[i][0] to x[i][S[i]-1] in order.
More specifically, White Rabbit will drive to the x[i][0]-th warehouse first(the car is empty before arriving at x[i][0]-th warehouse), and move any number of products to the car.
Then White Rabbit will drive to the x[i][1]-th warehouse. When arriving at x[i][1]-th warehouse, White Rabbit can put any number of products form the warehouse on the car or from the car on the warehouse.
After leaving the x[i][s[i]-1]-th warehouse, White Rabbit will go to the house of the customer and sell all of the rest products in the car to the customer. The house of i-th customer is located at (x2[i],y2[i]).
Besides, the i-th customer has a limit lim[i], denoting that the number of products White Rabbit gives the i-th customer can't be larger than lim[i].
White Rabbit wants to maximize the number of products it sells.
White Cloud wants to interfere White Rabbit. White Cloud has installed k Jammers. The i-th Jammer is located at (x3[i],y3[i]). It works on a circle with radius r[i]. If the connecting segments of two points are tangent or intersecting with the circle, the contact of two points will be disturbed.
To keep contact with the i-th customer, White Rabbit will skip x[i][t]-th(0<=t<S[i]) warehouse if the x[i][t]-th warehouse can't contact the house of i-th customer.
White Rabbit wants to know the maximum number of products it can sell.



