输出包括两行,第一行一个整数n,代表数组arr长度,第二行包含n个整数,第i个代表arr[i]
。
输出一个整数,代表最后获胜者的分数。
4 1 2 100 4
101
时间复杂度,空间复杂度
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String[] strCards = br.readLine().split(" ");
int[] cards = new int[n];
for(int i = 0; i < n; i++) cards[i] = Integer.parseInt(strCards[i]);
System.out.println(first(cards, 0, cards.length - 1)); // 假设A玩家先,并让他获胜
}
// 先手函数
private static int first(int[] cards, int left, int right) {
if(left == right) return cards[left]; // 剩最后一张牌,拿走
// 先手利益最大化
return Math.max(cards[left] + second(cards, left + 1, right), cards[right] + second(cards, left, right - 1));
}
// 后手函数
private static int second(int[] cards, int left, int right) {
if(left == right) return 0; // 剩最后一张牌,被先手的拿了
return Math.min(first(cards, left + 1, right), first(cards, left, right - 1)); // 先手留最少的给后手
}
} 然后根据递归的依赖关系改出动规版本:(1)有两个递归函数,就有两张动态规划表;(2)对于区间[left,right]上面的结果,dp[left][right]依赖left+1和right-1,因此left从大往小遍历,right从小往大遍历;(3)left不能大于right,因此动态规划表中left>right的区域无效。 import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
public class Main {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String[] strCards = br.readLine().split(" ");
int[] cards = new int[n];
for(int i = 0; i < n; i++) cards[i] = Integer.parseInt(strCards[i]);
// 先手和后手一起动规
int[][] dpFirst = new int[n][n];
int[][] dpSecond = new int[n][n];
for(int right = 0; right < n; right ++){
for(int left = right; left >= 0; left --){
if(left == right){
// 只剩一张牌,先手的拿
dpFirst[left][right] = cards[left];
dpSecond[left][right] = 0;
}else if(left < right){
dpFirst[left][right] = Math.max(cards[left] + dpSecond[left + 1][right], cards[right] + dpSecond[left][right - 1]);
dpSecond[left][right] = Math.min(dpFirst[left + 1][right], dpFirst[left][right - 1]);
}
}
}
System.out.println(Math.max(dpFirst[0][n - 1], dpSecond[0][n - 1]));
}
} import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = sc.nextInt();
}
int[][] dpf = new int[n][n];
int[][] dps = new int[n][n];
for (int j = 0; j < n; j++) {
for (int i = n - 1; i >= 0; i--) {
if (i > j) {
continue;
} else if (i == j) {
dpf[i][j] = arr[i];
dps[i][j] = 0;
} else {
dpf[i][j] = Math.max(arr[i] + dps[i + 1][j], arr[j] + dps[i][j - 1]);
dps[i][j] = Math.min(dpf[i + 1][j], dpf[i][j - 1]);
}
}
}
int res = Math.max(dpf[0][n - 1], dps[0][n - 1]);
System.out.println(res);
}
}
import java.util.Scanner;
public class Main{
public static void main(String[] args){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int[] arr=new int[n];
for(int i=0;i<n;i++){
arr[i]=sc.nextInt();
}
System.out.print(win(n,arr));
}
public static int win(int n,int[] arr){
if(arr==null||n==0){
return 0;
}
int[][] f=new int[n][n];
int[][] s=new int[n][n];
for(int j=0;j<n;j++){
f[j][j]=arr[j];
for(int i=j-1;i>=0;i--){
f[i][j]=Math.max(arr[i]+s[i+1][j],arr[j]+s[i][j-1]);
s[i][j]=Math.min(f[i+1][j],f[i][j-1]);
}
}
return Math.max(f[0][n-1],s[0][n-1]);
}
} import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = sc.nextInt();
}
int[][] f = new int[n][n];
int[][] s = new int[n][n];
for (int i = 0; i < n; i++) {
f[i][i] = a[i];
s[i][i] = 0;
}
for (int d = 1; d < n; d++) {
for (int i = 0; i < n - d; i++) {
f[i][i + d] = Math.max(a[i] + s[i + 1][i + d], a[i + d] + s[i][i + d - 1]);
s[i][i + d] = Math.min(f[i + 1][i + d], f[i][i + d -1]);
}
}
System.out.println(Math.max(f[0][n-1], s[0][n-1]));
}
}