第一行输入三个整数
代表数组中的元素数量、修改公式中的定值、操作次数。
第二行输入
个整数
代表数组元素。
在一行上输出一个整数,代表
次操作完成后数组元素和的期望。
可以证明答案可以表示为一个不可约分数
,为了避免精度问题,请直接输出整数
作为答案,其中
,
是满足
的整数。
2 6 1 3 5
11
全过程模拟如下:
![]()
的概率第一个元素硬币为正、第二个元素硬币也为正,答案为
;
![]()
的概率第一个元素硬币为正、第二个元素硬币为反,答案为
;
![]()
的概率第一个元素硬币为反、第二个元素硬币为正,答案为
;
![]()
的概率第一个元素硬币为反、第二个元素硬币也为反,答案为
;
综上,期望为
。
3 1 4 1 1 1
312500008
package main
import (
"bufio"
"fmt"
"os"
)
/*
分别求每一个数的期望
其中,考虑到and的性质,一个数变化一定次数后,值会变为0,后续值不再改变
*/
const MOD = 1000000007
// 快速幂:计算 (base^exp) % MOD
func powMod(base, exp, mod int64) int64 {
var result int64 = 1
for exp > 0 {
if exp&1 == 1 {
result = (result * base) % MOD
}
base = (base * base) % MOD
exp >>= 1
}
return result
}
// 计算 C(k, t) mod MOD,k 可能很大,但 t 很小
func comb(k, t int64) int64 {
/*
费马小定理
MOD为质数,den != 0,den^(MOD-1) = 1 (mod MOD)
den模MOD为1的逆为(den^(MOD-2))%MOD
*/
if t == 0{
return 1
}
if t < 0 || k < t {
return 0
}
var m, n int64 = 1, 1 // 分子、分母
for i := int64(0); i < t; i++ {
m = m * ((k - i) % MOD)% MOD
n = n * (i + 1) % MOD
}
n_ := powMod(n, MOD-2, MOD)
return m * n_ % MOD
}
// 模拟一个数 x 在操作下的演化路径
func evolvePath(x, m int64) []int64 {
path := []int64{}
for {
path = append(path, x)
andVal := x & m
if andVal == 0 { // 变化一定次数后会变为0
break
}
x = x + andVal
}
return path
}
// 计算单个数 x 经过 k 次操作后的期望值
func expectedOne(x, m, k int64) int64 {
path := evolvePath(x, m)
var T int64 = int64(len(path))
var num2k int64 = powMod(2, k, MOD)
var num2k_ int64 = powMod(num2k, MOD-2, MOD)
var result, front, t int64 = 0, 0, 0
for i := int64(0); i < T-1; i++ { // 前T-1个,
t = comb(k, i)
result = (result + path[i] * t) %MOD
front = (front + t)%MOD
}
result = (result + path[T-1] * ((num2k - front+MOD)%MOD)) % MOD
return result * num2k_ % MOD
}
func main() {
reader := bufio.NewReader(os.Stdin)
var n, m, k int64
fmt.Fscanf(reader, "%d %d %d\n", &n, &m, &k)
var a = make([]int64, n)
for i := int64(0); i < n; i++ {
fmt.Fscanf(reader, "%d", &a[i])
}
var result int64 = 0
for i := int64(0); i < n; i++ {
result = (result + expectedOne(a[i], m, k)) % MOD
}
fmt.Println(result)
} import java.util.Scanner;
// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
static final int MOD = (int) 1e9 + 7;
static final long[] p = new long[32];
static long fast_pow_mod(long a, long b, long p) {
long res = 1;
while (b > 0) {
if ((b & 1) != 0)
res = (long) res * a % p;
a = (long) a * a % p;
b >>= 1;
}
return res;
}
public static long C(int a, int b) {
if (a < b)
return 0;
long res = 1;
for (long i = 1, j = a; i <= b; j--, i++) {
res = (long) res * j % MOD;
res = (long) res * fast_pow_mod(i, MOD - 2, MOD) % MOD;
}
return res;
}
public static long solve(int[] list, int n, int m, int k) {
for (int i = 0; i < 31; i++) {
p[i] = C(k, i) * fast_pow_mod(fast_pow_mod(2, k, MOD), MOD - 2, MOD) % MOD;
p[31] = (p[31] + MOD - p[i]) % MOD;
}
p[31] = (1 + p[31]) % MOD;
long res = 0, x;
for (int i = 0; i < n; i++) {
x = list[i];
for (int j = 0; j < 32; j++) {
res += x * p[j] % MOD;
res %= MOD;
x += x & m;
}
};
return res;
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
int k = in.nextInt();
int[] list = new int[n];
for (int i = 0; i < n; i++) {
list[i] = in.nextInt();
}
System.out.println(solve(list, n, m, k));
}
}