首页 > 试题广场 >

下列关于 XGBoost 的说法,错误的是()

[单选题]
下列关于 XGBoost 的说法,错误的是()
  • XGBoost 支持单颗树粒度的并行
  • XGBoost 支持特征抽样
  • XGBoost 在代价函数里加入了正则项
  • XGBoost 支持对缺失值的自动处理
XGBoost与GBDT有什么不同 基分类器:XGBoost的基分类器不仅支持CART决策树,还支持线性分类器,此时XGBoost相当于带L1和L2正则化项的Logistic回归(分类问题)或者线性回归(回归问题)。 导数信息:XGBoost对损失函数做了二阶泰勒展开,GBDT只用了一阶导数信息,并且XGBoost还支持自定义损失函数,只要损失函数一阶、二阶可导。 正则项:XGBoost的目标函数加了正则项, 相当于预剪枝,使得学习出来的模型更加不容易过拟合。 列抽样:XGBoost支持列采样,与随机森林类似,用于防止过拟合。 缺失值处理:对树中的每个非叶子结点,XGBoost可以自动学习出它的默认分裂方向。如果某个样本该特征值缺失,会将其划入默认分支。 并行化:注意不是tree维度的并行,而是特征维度的并行。XGBoost预先将每个特征按特征值排好序,存储为块结构,分裂结点时可以采用多线程并行查找每个特征的最佳分割点,极大提升训练速度。
发表于 2025-08-13 11:01:07 回复(0)