2024 | 大模型算法工程师相关面试题汇总

前言

在准备大模型的面试时,我们需要对模型的基础理论、进阶应用、微调策略、以及特定技术如LangChain、参数高效微调(PEFT)等有深入的理解。

这里给大家整理了一份详细的面试题,帮助大家提前进行面试复习,同时对自己的技术进行查漏补缺。

一、大模型基础面试题

  1. 目前主流的开源模型体系有哪些?
  2. prefix LM 和 causal LM 区别是什么?
  3. 涌现能力是啥原因?
  4. 大模型LLM的架构介绍?

二、大模型进阶面试题

  1. llama 输入句子长度理论上可以无限长吗?
  2. 什么是 LLMs 复读机问题?
  3. 为什么会出现 LLMs 复读机问题?
  4. 如何缓解 LLMs 复读机问题?
  5. LLMs 复读机问题
  6. llama 系列问题
  7. 什么情况用Bert模型,什么情况用LLaMA、ChatGLM类大模型,咋选?
  8. 各个专业领域是否需要各自的大模型来服务?
  9. 如何让大模型处理更长的文本?

三、大模型微调面试题

  1. 如果想要在某个模型基础上做全参数微调,究竟需要多少显存?
  2. 为什么SFT之后感觉LLM傻了?
  3. SFT 指令微调数据 如何构建?
  4. 领域模型Continue PreTrain 数据选取?
  5. 领域数据训练后,通用能力往往会有所下降,如何缓解模型遗忘通用能力?
  6. 领域模型Continue PreTrain ,如何 让模型在预训练过程中就学习到更多的知识?
  7. 进行SFT操作的时候,基座模型选用Chat还是Base?
  8. 领域模型微调 指令&数据输入格式 要求?
  9. 领域模型微调 领域评测集 构建?
  10. 领域模型词表扩增是不是有必要的?
  11. 如何训练自己的大模型?
  12. 训练中文大模型有啥经验?
  13. 指令微调的好处?
  14. 预训练和微调哪个阶段注入知识的?
  15. 想让模型学习某个领域或行业的知识,是应该预训练还是应该微调?
  16. 多轮对话任务如何微调模型?
  17. 微调后的模型出现能力劣化,灾难性遗忘是怎么回事?
  18. 微调模型需要多大显存?
  19. 大模型LLM进行SFT操作的时候在学习什么?
  20. 预训练和SFT操作有什么不同
  21. 样本量规模增大,训练出现OOM错
  22. 大模型LLM进行SFT 如何对样本进行优化?
  23. 模型参数迭代实验

四、大模型Langchain面试题

  1. 什么是 LangChain?
  2. LangChain 包含哪些 核心概念?
  3. 什么是 LangChain Agent?
  4. 如何使用 LangChain ?
  5. LangChain 支持哪些功能?
  6. 什么是 LangChain model?
  7. LangChain 包含哪些特点?
  8. LangChain 如何使用?
  9. LangChain 存在哪些问题及方法方案?
  10. LangChain 替代方案?
  11. LangChain 中 Components and Chains 是什么?
  12. LangChain 中 Prompt Templates and Values 是什么?
  13. LangChain 中 Example Selectors 是什么?
  14. LangChain 中 Output Parsers 是什么?
  15. LangChain 中 Indexes and Retrievers 是什么?
  16. LangChain 中 Chat Message History 是什么?
  17. LangChain 中 Agents and Toolkits 是什么?
  18. LangChain 如何调用 LLMs 生成回复?
  19. LangChain 如何修改 提示模板?
  20. LangChain 如何链接多个组件处理一个特定的下游任务?
  21. LangChain 如何Embedding & vector store?

五、大模型参数高效微调(PEFT) 面试题

  1. 什么是 LoRA?
  2. LoRA 的思路是什么?
  3. LoRA 的特点是什么?
  4. QLoRA 的思路是怎么样的?
  5. QLoRA 的特点是什么?
  6. AdaLoRA 的思路是怎么样的?
  7. LoRA权重是否可以合入原模型?
  8. ChatGLM-6B LoRA后的权重多大?
  9. LoRA 微调优点是什么?
  10. LoRA微调方法为啥能加速训练?
  11. 如何在已有LoRA模型上继续训练?
  12. 为什么需要 提示学习(Prompting)?
  13. 什么是 提示学习(Prompting)?
  14. 提示学习(Prompting) 有什么优点?
  15. 提示学习(Prompting)有哪些方法,能不能稍微介绍一下它们间?
  16. 为什么需要 P-tuning v2?
  17. 为什么需要 P-tuning?
  18. 为什么需要 指示微调(Prompt-tuning)?
  19. 指示微调(Prompt-tuning)与 Prefix-tuning 区别 是什么?
  20. 指示微调(Prompt-tuning)与 fine-tuning 区别 是什么?
  21. 为什么需要 前缀微调(Prefix-tuning)?
  22. 为什么 需要 适配器微调(Adapter-tuning)?
  23. 微调方法是啥?如何微调?
  24. 为什么需要 PEFT?
  25. 介绍一下 PEFT?
  26. PEFT 有什么优点?
  27. 微调方法批处理大小模式GPU显存速度?
  28. Peft 和 全量微调区别?
  29. 多种不同的高效微调方法对比
  30. PEFT 存在问题?
  31. 能不能总结一下各种参数高效微调方法?

六、大模型推理面试题

  1. 为什么大模型推理时显存涨的那么多还一直占着?
  2. 大模型在gpu和cpu上推理速度如何?
  3. 推理速度上,int8和fp16比起来怎么样?
  4. 大模型有推理能力吗?
  5. 大模型生成时的参数怎么设置?
  6. 有哪些省内存的大语言模型训练/微调/推理方法?
  7. 如何让大模型输出合规化
  8. 应用模式变更

七、大模型评测面试题

  1. 大模型怎么评测?
  2. 大模型的honest原则是如何实现的?
  3. 模型如何判断回答的知识是训练过的已知的知识,怎么训练这种能力?

八、大模型强化学习面试题

  1. 奖励模型需要和基础模型一致吗?
  2. RLHF 在实践过程中存在哪些不足?
  3. 如何解决 人工产生的偏好数据集成本较高,很难量产问题?
  4. 如何解决三个阶段的训练(SFT->RM->PPO)过程较长,更新迭代较慢问题?
  5. 如何解决 PPO 的训练过程同时存在4个模型(2训练,2推理),对计算资源的要求较高 问题?

九、大模型训练集面试题

  1. SFT(有监督微调)的数据集格式?
  2. RM(奖励模型)的数据格式?
  3. PPO(强化学习)的数据格式?
  4. 找数据集哪里找?
  5. 微调需要多少条数据?
  6. 有哪些大模型的训练集?
  7. 进行领域大模型预训练应用哪些数据集比较好?

十、大模型Agent 面试题

  1. 如何给LLM注入领域知识?
  2. 如果想要快速体验各种模型,该怎么办?

十一、Token及模型参数准备篇

  1. 预训练数据 Token 重复 是否影响 模型性能?
  2. SFT需要训练Token数?

十二、大模型位置编码篇

  1. 什么是 长度外推问题?
  2. 长度外推问题 的 解决方法 有哪些?
  3. 旋转位置编码 RoPE 思路是什么?
  4. 推导一下 旋转位置编码 RoPE ?
  5. 旋转位置编码 RoPE 有什么优点?
  6. 旋转位置编码 RoPE 被哪些 LLMs 应用?
  7. 什么是位置编码?
  8. 什么是绝对位置编码?
  9. 什么是相对位置编码?

十三、大模型 Tokenizer 篇

  1. Byte-Pair Encoding(BPE) 如何构建词典?
  2. WordPiece 与 BPE 异同点是什么?
  3. 简单介绍一下 SentencePiece 思路?
  4. 举例 介绍一下 不同 大模型LLMs 的分词方式?
  5. 介绍一下 不同 大模型LLMs 的分词方式 的区别?

十四、Layer Normalization 篇

  1. LLMs 各模型分别用了 哪种 Layer normalization?
  2. LN 在 LLMs 中的不同位置 有什么区别么?如果有,能介绍一下区别么?
  3. Deep Norm 有什么优点?
  4. Layer Norm 的计算公式写一下?
  5. RMS Norm 的计算公式写一下?
  6. RMS Norm 相比于 Layer Norm 有什么特点?
  7. Deep Norm 思路?
  8. 写一下 Deep Norm 代码实现?

十五、大模型激活函数篇

  1. 介绍一下 FFN 块 计算公式?
  2. 介绍一下 GeLU 计算公式?
  3. 介绍一下 Swish 计算公式?
  4. 介绍一下 使用 GLU 线性门控单元的 FFN 块 计算公式?
  5. 介绍一下 使用 GeLU 的 GLU 块 计算公式?
  6. 介绍一下 使用 Swish 的 GLU 块 计算公式?
  7. 各LLMs 都使用哪种激活函数?
全部评论

相关推荐

岗位:蚂蚁数字科技-智能研发工程一面(11.24 90min):1、自我介绍2、深入讲一下你第一个项目,这个项目里面你设计的智能体的工作流程是怎么样子的?3、详细说一下里面的技术细节?跟模型的交互有哪些提示词,你是怎么设计的?这个过程中有哪些调优?4、你提到了会让模型结合提示词输出类似于json的结构,实际在和模型对接的过程中,有没有遇到模型幻觉问题,模型如果没有按照这层结构输出怎么解决?5、即使使用了few-shot也只是降低了幻觉概率,如果还是发生了,比如先输出了一段总结的话再输出json,有什么方法去兜住这种异常情况?6、有听说过上下文工程吗?你的项目里面有做一些上下文工程的优化吗?7、如果内容超出模型支持的token上限你会怎么解决?8、假如内容里面有不太友好的结构或者语句你会怎么转换变得对模型友好?9、在调用模型那些对话接口的时候,你有没有一些常用的超参数分享一下?10、温度有配置过吗?温度的高低对于模型输出会有怎么样的影响?11、详细介绍一下你的第二个项目12、有看过或者用过spring ai alibaba吗?13、看到你项目里支持对接mcp,讲一下你对mcp协议的了解14、有没有用过另外一个技术function call?讲讲mcp和function call的区别是什么?15、有了解过标准的rag请求分为哪几步吗?16、embedding之后有一个rerank步骤有了解过吗?17、讲一下你embedding所使用的模型18、展开讲一下你写的责任链与规则树的通用流程编排框架?是通过yaml或者json这种配置文件写还是java代码的形式?19、有用过langchain和langgraph吗?20、平时是怎么结合ai编程的,有用到哪些ai相关的产品?21、有用过gpt5的深度研究模式吗?这个深度研究模式跟平时的这种对话模式最大的区别是什么?22、讲一下spring框架的aop机制的原理是怎么样的,用来做一些什么功能23、多线程操作hashmap时会用到怎么样的一个类24、手撕:LRU25、反问二面(12.10 30min):1、自我介绍2、聊背景以及学校合作相关的问题3、选一个项目介绍一下,中间遇到了什么问题?你是怎么解决的?4、为什么想要做agent开发?为什么选择spring ai?5、设计一个双向链表,描述数据结构6、头指针和尾指针有什么作用?如果现在只知道一个node节点,但是不知道头尾指针,怎么把这个节点从链表里面删除?7、我现在手里有100张卡片,上面写了1-1000的整数,设计一个数据结构记录100张卡片的数字。然后随机拿走两张剩下98张卡片,用一个最快的方式找到拿走的两个卡片上的数字是什么?8、问了些个人情况(实习时间、广州人为什么来杭州之类的...)9、反问,无手撕
发面经攒人品
点赞 评论 收藏
分享
评论
16
91
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务