阿里淘工厂大模型一面-秋招面经

1.实习介绍
2.八股:LayerNorm和BatchNorm在训练时梯度计算有何本质区别?
3.八股:推导MoE架构的负载均衡损失函数,如何避免专家坍缩
4.八股:多模态融合中 对比学习损失和重构损失如何加权?
5.八股:解释KV Cache的内存瓶颈 推导多头注意力计算复杂度
6.项目:微调Qwen时发现验证集loss震荡的可能原因
7.项目:多工具调用中如何用DAG实现并行调度优化
8.项目:长文本推理的压缩方案 对比Sliding Window和NTK
9.项目:模型量化时遇到激活值异常溢出如何调试
10.项目:自主构建的评估体系里如何分离知识幻觉与推理幻觉
11.代码题:lc39 组合总和
全部评论

相关推荐

1. 实习介绍2. 挑一个你最熟悉的大模型项目,讲讲它的目标,你主要负责什么,以及你觉得最有意思的技术点。3. 在Transformer的Decoder里,我们为什么需要用Mask把未来的信息“遮住”?从代码实现上讲,这个Mask具体是怎么作用在Self-Attention分数上的?4. 关于LayerNorm放在残差连接的“前面”还是“后面”(Pre-LN vs Post-LN),社区里有很多讨论。这两种设计选择,主要会影响训练过程的哪些方面?你更倾向于哪一种,为什么?5. 我们要在线上部署一个大模型提供服务,推理速度和吞吐量是个大问题。像vLLM这样的工具,它主要是通过什么核心思想(比如PagedAttention)来解决KV Cache的内存问题,从而提升推理效率的?6. 我们有一个基础模型,但它不太会“听人话”。如果想把它训练成一个能很好遵循指令的聊天助手,通常有几步?能简单说说SFT(监督微调)和基于人类反馈的对齐(比如PPO/DPO)分别是在解决什么问题吗?7. 假设我们有一个效果很好的70B大模型,但因为太大太慢,没法直接上线。现在需要你把它“变小变快”。你会考虑用哪些方法(比如剪枝、量化)?各自有什么优缺点?8. 相比于让大模型直接回答问题,现在很流行的RAG(检索增强生成)方案,它最大的好处是什么?主要解决了什么痛点?9. 我们的RAG系统上线后,发现有时候还是会“胡说八道”,或者答非所问。如果让你去排查,你会从哪些方面入手?(比如是检索模块没找对,还是生成模块没理解好?)10. 核心代码模式算法题:二叉树的中序遍历11. 反问
点赞 评论 收藏
分享
1.  注意力机制:请简述 MHA、MQA 和 GQA 三种注意力机制的核心区别。2.  模型架构:Dense 模型与 MoE 模型有何本质区别?3.  路由机制:MoE 模型中,路由(Routing)机制具体是如何工作的?4.  LoRA 微调:请阐述 LoRA 的原理,以及其中 A、B 矩阵的初始化方式和秩(Rank)的设置考量。5.  强化学习:请对比 DPO、PPO 和 GRPO 的原理与区别,并写出 DPO 的 Loss 函数公式。6.  推理加速:vLLM 中使用了哪些关键技术(如 PagedAttention、KV Cache)来优化推理?7.  并行框架:你对 DeepSpeed 这一加速推理与训练框架有多少了解?8.  BM25 算法:请讲解 BM25 算法的计算原理。9.  负载均衡:MoE 模型中专家(Expert)的负载不均衡问题该如何解决?10.  损失函数:能否通过修改损失函数的方式来缓解 MoE 的负载均衡问题?11.  数据分布:SFT 微调数据与预训练数据分布差异较大时,该如何处理?12. Scaling Law:SFT 微调的数据集是越大越好吗?是否存在 Scaling Law 现象?13. 训练稳定性:强化学习(RL)为何存在训练不稳定的问题?既然不稳定为何业界仍广泛使用?14. 三数之和:LeetCode 15. 三数之和。📳对于想求职算法岗的同学,如果想参加高质量项目辅导,提升面试能力,欢迎后台联系。
查看14道真题和解析
点赞 评论 收藏
分享
评论
点赞
1
分享

创作者周榜

更多
牛客网
牛客网在线编程
牛客网题解
牛客企业服务